On uniquely 3-colorable planar graphs

نویسنده

  • V. A. Aksionov
چکیده

A k-chromatic graph G is called uniquely k-colorable if every k-coloring of the vertex set V of G induces the same partition of V into k color classes. There is an innnite class C of uniquely 4-colorable planar graphs obtained from the K 4 by repeatedly inserting new vertices of degree 3 in triangular faces. In this paper we are concerned with the well-known conjecture (see 6]) that every uniquely 4-colorable planar graph belongs to C. We shall show that a minimal counterexample to this conjecture is 5-connected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size of edge-critical uniquely 3-colorable planar graphs

A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G is edge-critical if G − e is not a uniquely k-colorable graph for any edge e ∈ E(G). Mel’nikov and Steinberg [L. S. Mel’nikov, R. Steinberg, One counterexample for two conjectures on three coloring, Discrete Math. 20 (1977) 203-206] as...

متن کامل

The Size of Edge-critical Uniquely 3-Colorable Planar Graphs

A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one k-coloring up to permutation of the colors. A uniquely k-colorable graph G is edge-critical if G−e is not a uniquely k-colorable graph for any edge e ∈ E(G). In this paper, we prove that if G is an edge-critical uniquely 3-colorable planar graph, then |E(G)| 6 83 |V (G)| − 17 3 . On the other hand, there exis...

متن کامل

Characterization of Uniquely Colorable and Perfect Graphs

This paper studies the concepts of uniquely colorable graphs & Perfect graphs. The main results are 1) Every uniquely k-colorable graph is (k 1)-connected. 2) If G is a uniquely k-colorable graph, then  (G) ≥ k l. 3) A maximal planar graph G of order 3 or more has chromatic number 3 if and only if G is Eulerian. 4) Every interval graph is perfect. 5) A graph G is chordal if and only if G can b...

متن کامل

J un 1 99 9 Some Concepts in List Coloring

In this paper uniquely list colorable graphs are studied. A graph G is called to be uniquely k–list colorable if it admits a k–list assignment from which G has a unique list coloring. The minimum k for which G is not uniquely k–list colorable is called the m–number of G. We show that every triangle–free uniquely colorable graph with chromatic number k+1, is uniquely k–list colorable. A bound fo...

متن کامل

On uniquely k-list colorable planar graphs, graphs on surfaces, and regular graphs

A graph G is called uniquely k-list colorable (UkLC) if there exists a list of colors on its vertices, say L = {Sv | v ∈ V (G)}, each of size k, such that there is a unique proper list coloring of G from this list of colors. A graph G is said to have property M(k) if it is not uniquely k-list colorable. Mahmoodian and Mahdian [7] characterized all graphs with property M(2). For k ≥ 3 property M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1977